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Abstract—With the proliferation of Android malware, the
demand for an effective and efficient malware detection system
is on the rise. The existing device-end learning based solutions
tend to extract limited syntax features, such as permissions and
API calls, to meet a certain time constraint of mobile devices.
However, unlike sequence-based features, syntax features lack the
semantics which can represent the potential malicious behaviors
and further result in more robust model with high accuracy for
malware detection.

In this paper, we propose an efficient Android malware
detection system, named SeqMobile, which adopts behavior-based
sequence features and leverages customized deep neural networks
on mobile devices instead of the server end. Different from the
traditional sequence-based approaches on server end, to meet the
performance demand on mobile devices, SeqMobile accepts three
effective performance optimization methods to reduce the time
of feature extraction and prediction. To evaluate the effectiveness
and efficiency of our system, we conduct experiments from the
following aspects 1) the detection accuracy of different recurrent
neural networks (RNN); 2) the feature extraction performance
on different mobile devices, and 3) the detection accuracy and
prediction time cost of different sequence lengths. The results
unveil that SeqMobile can effectively detect malware with high
accuracy. Moreover, our performance optimization methods have
proven to improve the performance of training and prediction
by at least twofold. Additionally, to discover the potential
performance optimization from the state-of-the-art TensorFlow
model optimization toolkit for our sequence-based approach,
we also provide an evaluation on the toolkit, which can serve
as a guidance for other systems leveraging on sequence-based
learning approach. Overall, we conclude that our sequence-based
approach, together with our performance optimization methods,
enable us to efficiently detect malware under the performance
demands of mobile devices.

Index Terms—Malware detection, Sequence feature, Deep neu-
ral network, Mobile platform, Performance

I. INTRODUCTION

Smartphones have revolutionized our lives for the better

in some ways. Besides calling and sending text messages,

people are using these devices to watch movies, perform

banking transactions [1], [2], read the news, etc. It is un-

deniable that these smartphones have yielded many benefits

for society, allowing millions of people to stay connected

through the Internet. Consequently, it has also drawn the

attention of malware authors to disseminate their malware

on the application markets (e.g., Google Play Store) [3].

However, unlike the App Store for Apple iOS, the protocol for

∗Ruitao Feng is the corresponding author.†These two authors contributed equally to this paper.

uploading an application on the Android application market is

not that stringent. Therefore, there is a demand for an effective

malware detection system running on the device to address the

above security problem.

Currently, majority of the machine learning-based malware

detection systems performed their analysis on the server

side [4], [5], until Drebin [6], which is a lightweight method

for detection of Android malware that enables identifying

malicious applications using machine learning directly on the

smartphone. Recently, researchers have been looking at ways

to implement effective solutions with deep learning techniques

on the device-end. Due to the performance limitations on

mobile devices, researchers tend to extract limited syntax

features to meet certain time constraints [7], [8]. Although

using syntax features without semantics (e.g., order, position)

has achieved a relatively high accuracy, it will consequently

fail to maintain a more robust detection system by providing

necessary information to represent certain malicious behav-

iors. Therefore, there is a demand to research into ways

to effectively represent meaningful and robust features such

that it contains more semantics on the malicious behaviors

with limited performance overhead on mobile devices. Unlike

syntax feature based learning approaches, the feature input

for sequence-based learning approaches provides not only

the existence of each determined syntax feature, but also

represents the semantics corresponding to certain behavior

patterns [9]–[11]. However, due to the complexity of sequence-

based feature, traditional server-end sequence-based learning

approaches failed to satisfy the demand of run-time perfor-

mance when it comes to detection on mobile devices. To

address these problems, we intend to provide an efficient

sequence-based malware detection system using deep learning

on mobile devices.

In this paper, we propose SeqMobile, which adopts

behavior-based sequence features and customized deep neu-

ral networks to provide an effective and efficient malware

detection service on Android devices. To enhance the per-

formance of SeqMobile, we propose a series of performance

optimization methods that can effectively reduce the training

and prediction time for sequence-based approaches. In the

experiments, we first summarize and propose 8 feature cat-

egories (e.g., combination of permissions, intent filters, API

sequence and intent sequence) and investigate their corre-

sponding performance with different deep neural networks.

We then perform an evaluation using accuracy and prediction
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time as metrics to decide on a suitable network configuration.

After that, we accept the pre-trained model that yields the

best results and deploy it onto Android devices. To ensure

that our pre-trained models are compatible with Android

device, we convert our pre-trained models into lightweight

TensorFlow Lite models. In our proposed system, we prioritize

time cost over accuracy such that lower-end devices can

choose to trade off less than 1% of the classification accuracy

for lower prediction time. Overall, through our performance

optimization methods, SeqMobile can achieve a relatively

higher classification accuracy (i.e., 97.85%) as well as lower

feature extraction and prediction time cost (i.e., <5s).

In this paper, we make the following contributions:

• We propose an efficient sequence-based malware detection

system, which adopts behavior-based sequence feature and

customized deep neural network to provide an effective and

efficient malware detection service on Android devices.

• We present a systematic approach to directly extract the

semantic feature sequence, which can provide information

of certain malicious behaviors, from binary files under

a certain time constraint. Thereby, achieving a relatively

higher classification accuracy (i.e., 97.85%).

• We propose a method to remove repetitive elements in

sequences and further evaluate how it can affect the overall

performance of our malware detection system. Results

has shown that our removal method significantly enhances

the training and prediction performance with insignificant

effects on the accuracy. To our best knowledge, this is

the first comprehensive study on how removing repetitive

elements in sequences can affect training and prediction

performance in sequence-based learning approach on mo-

bile devices.

• We conduct an evaluation on the state-of-the-art mobile-

end model optimization toolkit provided by TensorFlow

for our proposed sequence-based learning approach. The

evaluation results can serve as a guidance for other mobile-

end sequence-based learning approaches.

II. BACKGROUND

A. Sequence Representation of Application Behavior

Mostly, Android applications provide their functionalities

with basic behaviors that are represented using permissions,

intent, API calls and etc. However, the analysis of Android

malware shows that there are high risks that those basic

behaviors inside applications may be accepted as a part of

malicious functionalities. For example, considering a spyware,

no matter how much it hides its malicious functionality, there

will still be necessary basic behaviors existing to access the

private information from those devices. Thus, a semantic rep-

resentation of the basic behaviors, like sequence-based feature,

will be beneficial in providing the corresponding potential

malicious information unlike the traditional syntax feature in

learning approaches.

B. Native Code Implementation

Considering the architecture of an Android system, the

functionalities in Java implementation will be executed on

Dalvik Virtual Machine. Different from traditional operating

systems, when facing computationally intensive tasks, signif-

icant performance problems may occur on mobile devices.

To meet certain performance criteria on Android devices,

developers often investigate the bottleneck of their code and

attempt improve the performance by re-implementing it using

native code (C and C++), which can then be invoked through

the Java Native Interface (JNI) [12]. As a result, Google

recommends developers to perform the heavy operations on

the native-end and return the results to the Java-end through

JNI.

C. Model Quantization

Popular deep learning frameworks such as TensorFlow [13]

has provided a state-of-the-art model optimization toolkit [14]

to help optimized pre-trained models on mobile devices.

Quantization is one of the features provided in the toolkit that

can reduce the model size and prediction time by reducing the

precision of the parameters inside the model (e.g., float32 to

float16).

D. Static and Dynamic RNN

Known for their recurrent structure and the internal mech-

anism that stores the information on the previous state and

forward it to the next state, RNNs are preferred when it

comes to sequence-based approaches. There are two types

of RNN implementations namely, static and dynamic RNNs.

The main difference between them is that dynamic RNN is

configured to accept variable length input while static RNN

only accepts fixed length input. Having said that, when a

static RNN is used, padding or truncation needs to be perform

on the input sequence to ensure it matches the defined input

length requirement of the model. In contrast, only truncation

is needed when for dynamic RNN so that the input sequence

length does not exceed the defined required length.

III. APPROACH

A. Overview

Fig. 1 demonstrates the overview of SeqMobile, which

contains learning phase and deployment phase.

Learning phase, which is done on a server, consists of

feature preparation, network training, and model conversion.

In the feature preparation step, we focus more on extracting

features as sequences such that it can provide more semantics

to help distinguish between malicious and benign behaviors

inside Android applications. First, a set of feature dictionaries

will be constructed (step 1©). Next, we extract the feature

sequences and use the constructed dictionaries to filter out

the redundant elements (step 2©). After that, we represent

each element in the filtered sequence with a unique integer

identifier and pass it into our proposed network for training

(step 3©). Once a trained model is obtained, it will be converted

into a TensorFlow Lite [15] model (step 4©), which can then
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Fig. 1: Overview of SeqMobile

be loaded onto mobile device and used with the Tensorflow

Lite interpreter to do inferences (step 5©). In the midst of

conversion, Tensorflow provides user an option to enable

quantization, which is a technique that can further reduce the

size of pre-trained model with minimal effect on the accuracy.

However, we don’t perform quantization in SeqMobile since

our experiments in § IV-C2 shows it is more advantageous for

our proposed network.

Deployment phase will first perform feature extraction from

the target APK and use the constructed dictionaries from the

learning phase to filter out the redundant elements (step A©),

when an Android package (APK) is downloaded into the

device. To ensure efficiency, a small but crucial part of the

feature extraction module is implemented using native code,

where a performance gain can be observed even on lower-end

devices. After that, the extracted sequence will be fed into the

classifier module to determine whether the target application is

benign or malicious (step B©). Finally, SeqMobile will output

the classification results to the user (step C©).

B. Feature Preparation

In the feature preparation step, SeqMobile mainly focuses

on selecting features from the AndroidManifest.xml and DEX

file (classes.dex). In order to determine the features used in

SeqMobile, we perform a static analysis and select 4 kinds of

informative and semantic feature sets that can potentially help

to distinguish between malware and benign samples. For each

feature set, we rationalize the reason of our selection with

concrete examples. Besides, to remove the effect of certain

elements that may not be helpful in providing information,

we have built dictionaries (step 1©) for the purpose of filtering

out those elements. Each element in the filtered sequence will

then be represented as a unique integer value so that it can

be fed into our neural network for training. In addition, we

also experiment with different combinations of feature sets to

determine which combination yields the best accuracy with

acceptable extracting performance. Based on the results, we

selected 4 feature sets as our input to the neural network. The

details of the experiment can be found in § IV-B1.

1) Feature selection: As a result of the strong dependency

between the detection accuracy of learning-based approaches

and the coverage of malicious information, the features that

are able to represent more semantics in the malicious be-

haviors will have a higher probability to achieve a better

TABLE I: An example of API mapping

API Description
API0 Ljava/net/HttpURLConnection;->connect

API1 Ljava/io/BufferedReader;->readLine

API2 Landroid/net/Uri;->parse

API3 Landroid/content/ContentResolver;->query

result. Thus, based on this concept, we determine to accept

two non-sequential features: Permission, Intent filters, and

two sequential features: API call sequence, Intent sequence

depended on our analysis against Android malware.

• N{Perm}: Permissions are defined in the AndroidManifest

file. Previous studies [16]–[18] have shown that majority of

the malicious application tend to request dangerous permis-

sions as compared to benign applications. This indicates that

including permissions as a part of our feature can potentially

help us distinguish malware and benign apps.

• N{Intent}: Intent filters are defined inside the AndroidMan-

ifest.xml file that specifies what type of intents a component

(e.g., Activity) would like to receive. Intent filter makes it

possible for other applications to directly start the activity

by sending out the defined intent message. An example of

how malicious application abuse the intent filter is that they

usually listen for the BOOT COMPLETED intent, which is

sent after successfully booting up the mobile device, to start

their malicious activities [18].

• S{API}: Representing API calls features in an unordered

manner is usually sufficient to provide enough informa-

tion on the behaviors of an Android application. However,

if the API calls are represented in a sequential manner,

it can provide us with additional semantics amongst the

API calls. Two behaviors are defined using sequence of

API calls, where S
{API}
0 ={API0, API1, API2, API3} and

S
{API}
1 ={API2, API3, API0, API1}. The details of each

API can be found in Table I. The behavior S
{API}
0 repre-

sents the action of communicating to the internet followed

by reading of SMS inbox messages. This is a typical

behavior for instant messaging applications where they try to

verify your mobile number. In contrast, S
{API}
1 represents

the action of reading of SMS inbox messages followed

by a communication to the internet, which is possibly a

malicious behavior where an adversary attempts to retrieve

inbox messages.

• S{Intent}: Besides picking API call sequence as a part of

our feature set, we also accept the sequential intent as a

supplemental feature for the API call sequence with the
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TABLE II: Vocabulary size of each dictionary

Dictionary Vocabulary size
Permissions 324

Intents 262

API calls 2,288

following two reasons. Firstly, when API call sequence is

included as our feature set, the function parameters are

not taken into account, thus, generic API calls such as

Landroid/content/Intent;->init or Landroid/content/Intent;-

>setAction is unable to provide information on the purpose

of invocation unless the corresponding string parameter is

included. Secondly, relying on intent filters is not sufficient

as it represents what type of intent the component is

looking out for. Oftentimes, intents can be omitted from

the manifest file. One typical example is that malware can

make use of the ACTION CALL intent to call premium

rate numbers while the user is not looking [19]. In addition,

the ACTION CALL intent does not need to be defined in

the manifest file. Thus, we include the string parameter

of the generic API calls mentioned above in a sequential

order and intertwine it with the API call sequence (e.g.,

S{API,Intent}={API1, IN0, API2, API0, IN2, API3}).
2) Feature dictionary construction: Since there are cer-

tain elements that may not be related to potential malicious

behaviors in the raw data (i.e., .xml and .dex files) within each

feature set, a set of feature dictionaries are necessary in the

feature extraction step. Thus, based on the static analysis result

on potential malicious behaviors, a set of feature dictionaries

has been constructed (step 1©).
Permission and intent dictionary. To build the permission

and intent dictionary, we refer to the Android source code

which are predefined by Google developers to retrieve all the

permissions and intent filter values.
API call dictionary. To build the API call dictionary, we

conduct a data-driven analysis to collect API calls from more

than 60,000 real-world applications and pruned the result set

by removing self-defined API calls as well as uncommon third-

party API calls [8].
In summary, we constructed 3 feature dictionaries and the

total number of vocabulary in each dictionary can be found in

Table II.
3) Feature extraction: To generate and formalize the se-

lected features (step 2©), we first propose a repetitive elements

removal method, which can boost the performance of our

system with little effect on the accuracy (discussed in § IV-B2),

by reducing the length of feature sequence for the selected

sequence-based features. Next, with the shorten feature se-

quence, we transform it into a numeral sequence such that it

will be suitable to be fed into the neural network.
Raw string based feature representation. To extract S{API},
we disassemble the DEX file and look for instructions starting

with the invoke-* opcode. At the same time, we also include

the S{Intent} feature into the sequence by looking out for

instructions that starts with the const-string opcode. For each

of the instructions found, we concatenate them to form a string
based sequence, Sd. An example of such sequence will be

TABLE III: Network architecture - Bi-LSTM

Layer Output Shape
Embedding (None, None, 128)

Bidirectional (LSTM) (None, None, 512)

Batch Normalization (None, None, 512)

GlobalMaxPooling1D (None, 512)

Dense (ReLU) (None, 64)

Dense (ReLU) (None, 32)

Dense (softmax) (None, 2)

S{API,Intent}={API0, API1, IN1, IN2, API3} where IN1

and IN2 are intent values. After that, permissions and intent

filters will be extracted and matched against the corresponding

dictionaries to construct the non-sequential feature, N{Perm}

and N{Intent}. Finally, we concatenate the extracted sequence,

Sd, together with N{Perm} and N{Intent} to form the final

sequence, Sf . Based on the experiment results presented in

§ IV-B1, we select 4 features as the final feature set namely,

N{Perm}, N{Intent}, S{API}, and S{Intent}.
Repetitive elements removal. Oftentimes, there can be re-

peated elements in a sequence. An example of how this can

occur is that a developer may define two different methods,

M1 and M2, that execute very similar tasks. We define APIi
and INi as API calls and intent values which are defined in the

dictionaries and S APIi as self-defined API calls not found

in the API dictionary. Consider M1= {IN0, API0, S API0}
and M2={IN0, API0, S API1, API1}. After the extracted

sequence is filtered against the respective dictionaries, the

resulting sequence is {IN0, API0, IN0, API0, API1}, which

is basically a repetition of {IN0, API0} followed by an

API1. If we view it from the perspective of a text sentiment

analysis problem, having the sentence “this movie is great, this

movie is great” does not change the polarity of the sentence,

likewise, having repetitive elements in the sequence will have

insignificant effects (§ IV-B2) on the polarity (i.e., malicious

or benign). Thus, the resulting sequence after removing the

repetitive elements will be {IN0, API0, API1}.
Dictionary identifier assignment and integer based se-
quence representation. In order to transform the string based

sequence into an integer sequence, we first assign each dic-

tionary element with a unique integer identifier and store the

pair in a look up table, Tl. By referring to the look up table,

we represent each element in Sf with their respective integer

identifier. After that, we can feed it into the embedding layer

of the proposed network Table III (step 3©).

C. Deep Learning Model Construction

To discover the usability of different neural networks for

our selected feature sets, we present 6 basic neural net-

works to train our classifier (i.e., single layer LSTM/GRU,

stacked LSTM/GRU, and Bi-LSTM/GRU) (details on our

website [20]). By comparing the accuracy, we accept the Bi-

LSTM, which yields the highest accuracy, as basic network

and perform a customization on the architecture to further

enhance the accuracy. The architecture of the customized Bi-

LSTM network is shown in Table III.

1) Sequence padding: The length of Sf varies from one

application to another, hence, we pad the input sequence to

66

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:45:40 UTC from IEEE Xplore.  Restrictions apply. 



ensure that the length is consistent with the required input

length of the network, L. If the length of Sf is shorter than

L, we perform post-zero padding to Sf till it reaches L. If the

length of Sf is longer than L, we truncate Sf till L.

2) Customized deep neural network architecture: To train

our malware classifier, we present a customized Bi-LSTM

network. As shown in Table III, the first layer is an embedding

layer. Due to our large vocabulary size, representing our input

sequence using one-hot encoding results in a sparse vector,

which is not memory efficient during training and prediction.

By incorporating an embedding layer, it can help to reduce the

dimensionality of our feature vectors where each element of

our integer input sequence is represented as a lower dimension

fixed sized vector. The second layer is a Bi-LSTM layer,

which has the ability to preserve information from both the

forward and backward along the sequence, thus allowing the

network to understand the contextual information better and

results in a more comprehensive learning of the problem.

The third layer is a batch normalization layer, it has been

shown that incorporating a batch normalization layer to the

network can reduce the internal covariate shift [21], [22].

After that, a global max-pooling function is used to capture

the most important factor. Then, the output from the global

max-pooling function will pass through the 2 fully connected

layers with Rectified Linear Unit (ReLU) activation function

followed by a fully connected layer with a softmax activation

function. Finally, the output from the last fully connected layer

determines which class the input sequence belongs to.

D. Model Conversion and Quantization

In order to make our pre-trained model compatible with

mobile devices, we convert the pre-model into a TensorFlow

Lite model using TFLiteConverter [23]. We have also con-

ducted experiments and decided not to perform quantization

even though it has advantages such as prediction time and

model size reduction. By not applying quantization to our

model, we are able to achieve dynamic prediction time where

the prediction time cost is dependent on the extracted sequence

length (details in § IV-C2).

E. Real Time Detection System

Before conducting a real-time detection on device, the

feature dictionaries and converted model will be loaded into

the feature extraction and classifier modules respectively (step
5©). Once a new APK file is received, SeqMobile first performs

feature extraction on the target APK with the constructed

dictionaries from the learning phase (step A©). To improve

the overall performance of SeqMobile, we directly extract the

selected features from the binary files and perform repetitive

sequence removal such that the sequence length can be re-

duced. In addition, we also optimized our feature extraction

module by incorporating some native code in the implemen-

tation. Next, we perform truncation to the input sequence but

not padding. Results from our experiments shows that without

padding, we can not only achieve the best accuracy, but also

a shorter prediction time. Finally, the classifier module will

TABLE IV: Dataset

Class Source Quantity
Malicious Contagio 327

Malicious Drebin 5,339

Malicious Genome 1,253

Malicious Pwnzen 774

Malicious Virusshare 14,797

Benign Google Play Store 22,490

Total Malicious - 22,490

Total Benign - 22,490

Total - 44,980

determine from the extracted features whether the Android

application is malicious or benign.

IV. EXPERIMENTS

In this section, we present four sets of experimental stud-

ies. We aim to determine: (1) the detection performance of

different networks across different combination of feature

categories; (2) the training and prediction performance gain

through our repetitive elements removal method; (3) the fea-

ture extraction performance across different mobile devices;

and (4) the performance comparison between the quantized

and non-quantized dynamic RNN model. Finally, we briefly

compare the performance of our approach with two other

previous work [7], [8].

A. Experiment Environment and Dataset

Environment. All experiments are conducted on an Ubuntu

server with Intel Xeon E5-2699 V3 CPUs, NVIDIA GeForce

RTX 2080 Ti GPU and 6 different Android devices, which

consists of 3 flagship devices (i.e., Samsung Note10+, S10+,

S9+), 1 common device (i.e., Samsung S7), and 2 low-end

devices (i.e., Samsung J2 Pro and HTC ONE A9).

In our server-end tasks, Java is our choice of language for

implementing the feature extraction module and TensorFlow

2 [13] is chosen as our deep learning framework. For feature

extraction, we use additional tools such as dexdump [24] and

AXMLPrinter2 [25]. As for the TensorFlow Lite converter,

a specific TensorFlow nightly build (2.2.0.dev20200430) [26]

which supports our proposed network architecture is used.

Dataset. To evaluate SeqMobile, we collected 44,980 Android

applications samples which can be divided into two classes;

benign and malicious. We crawled the benign samples from

Google Play Store, while the malicious set is composed of

samples from different sources such as Drebin [6], Genome

project [27], Contagio Mobile [28], VirusShare [29], and

Pwnzen Infotech Inc. [4], [5]. The breakdown of the dataset

is shown in Table IV. To split our dataset, we randomly select

70% of the samples from each class for training, 15% for

validation and 15% for testing.

B. Effectiveness Evaluation of Feature Selection, Deep Neural
Networks, and Repetitive Pattern Removal in Feature Prepa-
ration and Network Training Phases

We evaluate the effectiveness of SeqMobile in the learning

phase from the following aspects: (1) the accuracy across

different feature categories, length, and deep neural networks
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TABLE V: Detection results of best feature category combinations across difference networks

Network Feature Combination Sequence Length Accuracy Precision Recall

Single LSTM N{Perm}, N{Intent}, and S{API} 600 96.47% 97.66% 95.23%

Single GRU N{Perm}, N{Intent}, and S{API} 1,500 96.78% 96.99% 96.56%

Stacked LSTM N{Perm}, N{Intent}, and S{API} 600 96.49% 97.86% 95.05%

Stacked GRU N{Perm}, N{Intent}, and S{API} 1,500 96.90% 97.42% 96.35%

Basic Bi-LSTM N{Perm}, N{Intent}, and S{API} 1,500 96.98% 97.51% 96.41%

Basic Bi-GRU N{Perm} and S{API,Intent} 1,900 96.75% 97.47% 96.00%

Customized Bi-LSTM N{Perm}, N{Intent}, and S{API,Intent} 1,700 97.85% 97.89% 97.81%

Customized Bi-GRU S{API} 1,500 97.67% 98.11% 97.21%

Fig. 2: Distribution of extracted sequence length

Fig. 3: Accuracy change across different sequence length on
N{Perm}, N{Intent}, and S{API,Intent}

and (2) the effect on training accuracy and performance

brought by our repetitive pattern removal method.

1) Accuracy comparison across feature categories and deep
neural networks: To determine the best training configuration,

we set up an experiment across three aspects (i.e., feature cat-

egories, sequence length, and network types). To find out the

most suitable network, we first evaluate the detection accuracy

of 6 different basic network configurations across 8 different

feature categories (details on our website [20]), which apply

S{API} as the basic feature and combined with N{Perm},
N{Intent}, and S{Intent} respectively. In addition, as shown

in Fig. 2, majority of the APKs in our dataset have sequence

length ranging up to 2,000. Thus, we also train each network

across different sequence length to determine the appropriate

sequence length that yields the best accuracy. To choose the

range of sequence length to experiment on, we progressively

increase the sequence length until no significant improvement

on the accuracy can be observed. In total, according to the

distribution of extracted sequence length, we select 6 different

values ranging from 300 to 1,900 to train the networks. As

shown in Table V, the basic Bi-LSTM network achieves the

highest accuracy (i.e., 96.98%) out of the other basic networks.

To further improve the detection accuracy, we customize the

basic Bi-LSTM to our best effort such that there is a significant

TABLE VI: Average sequence length

Dataset Original Length After Removal
Benign 2,789 1,060

Malware 1,249 598

improvement on the accuracy. We first progressively increase

the number of parameters (i.e., increase LSTM units and add

fully connected layer) in the network. Consequently, a longer

training duration can be observed due to the increased network

parameters. Thus, we added a batch normalization followed

by GlobalMaxPooling1D layer to reduce the training duration.

Our experiment results shows that by configuring the network

as shown in Table III, the feature set combination that achieves

the best accuracy is N{Perm}, N{Intent}, and S{API,Intent},
which achieves an accuracy of 97.85% when the sequence

length is 1,700 (shown in Fig. 3).

2) Effect of repetitive pattern removal: We conduct ex-

periments to investigate how removing of repetitive sequence

will benefit the performance of the system. In the experiment,

we use the following metrics: (1) accuracy and (2) training

duration to evaluate our method. The results show that (1)

removing the repetitive pattern in a sequence has insignificant

effects on the learning ability of the neural network; (2) it can

help improve the training and prediction performance in terms

of time cost.

Average number of removed repetitive elements. To show

the necessity of our repetitive elements removal method, we

first calculate the number of repetitive elements removed

in each dataset (i.e., benign and malware) to get a rough

estimation of the proportion being removed by comparing with

the original average sequence length. As shown in Table VI,

the average sequence length is reduced by approximately 62%

(1,060 vs. 2,789) in the benign dataset. Similarly, the average

sequence length is reduced by approximately 52% for the

malware dataset. When taking into account for both datasets,

the sequence length is reduced by 57% on average. Thus,

based on the results, we take 0.6 as an approximate proportion

of the repetitive elements in the original sequences and define

equation (1) to calculate the estimated original sequence length

for each non-repetitive sequence length.

Seqoriginal =
Seqnon−repetitive

1− 0.6
(1)

Accuracy comparison between non-repetitive and original
sequence. To discover the effect of our repetitive elements

removal method on model accuracy, we define the following

2 models, M1, which adopts the sequences without repetitive

68

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:45:40 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Training time across different sequence length and accuracy
comparison between M1 and M2

elements as its input, Seqnon−repetitive, and M2, which is

trained using the original sequences that contain repetitive

elements, Seqoriginal, and train them with sequence length

ranging from 100 to 750. From the previous experiment, the

input sequence length is reduced by 57% on average after re-

moving repetitive elements, as a result, with the same sequence

length, Seqnon−repetitive will provide more information than

Seqoriginal. To compare the accuracy of M1 and M2, we

use the equation in (1) to estimate the corresponding original

sequence length for each Seqnon−repetitive, and assign them

as a control group. For example, if the accuracy of M1 at

sequence length 200 is 96.15%, we will apply equation (1)

to calculate the length of Seqoriginal (i.e., 500). From the

line chart in Fig. 4, the accuracy for M2 is 96.13% when the

sequence length is 500, which is very close to the accuracy

for M1 (i.e., 96.15%) at sequence length 200. Similarly, the

accuracy at M1 when the sequence length is 300, is very close

to the accuracy of M2 when the sequence length is at 750

(96.78% vs. 96.74%). This shows that by removing repetitive

elements in a sequence, it will have very little effect on the

learning ability of the network.

Performance improvement in network training. To find

out the performance improvement of our repetitive elements

removal method in the network training phase, we also provide

a comparison on training time between each grouped models

with non-repetitive and original sequences respectively. From

the histogram in Fig. 4, the training time for M2 is 28.42

minutes when the sequence length is 500. Comparing with the

time for M1 (i.e., 13.33 minutes) at sequence length 200, our

repetitive elements removal method improves the training per-

formance by around 53.1%. Similarly, comparing the training

time for M1 when the sequence length is 300, we observe a

much shorter training time for M2 when the sequence length

is at 750 (17.40 minutes vs. 41.85 minutes). This provides

a strong evidence for proving that our repetitive elements

removal method benefits a lot in the training performance.

C. Performance Evaluation and Optimization of Feature Ex-
traction and Detection on Android Mobile Devices

We evaluate the performance of our device-end modules

(i.e., feature extraction and prediction modules) separately.

For the feature extraction module, we conduct experiments

to determine (1) the performance of extraction time on mobile

Fig. 5: Performance gain with JNI implementation

devices, by comparing the extraction time of our final feature

combination (i.e., N{Perm}, N{Intent} and S{API,Intent})
across 6 different APK sizes; and further evaluate (2) the

performance gain of the feature extraction module where

certain parts are rewritten in native code. For the prediction

module, we assess the performance gain across 2 aspects,

which are input sequence and deployed model configuration.

1) Performance comparison of feature extraction between
implementing with JNI and Java language on Android de-
vices: To discover the potential performance optimizations in

feature extraction on real devices, we implement part of the

feature extraction module that involves string manipulation in

C++ and use JNI to interact with the native implementation.

Based on the previous experiment, we select the feature set

combination that yields the highest accuracy (i.e., N{Perm},
N{Intent} and S{API,Intent}) and measure the time cost

between the Java and JNI implementation. The APKs used

in this experiment are handpicked, with file sizes ranging

from 5MB to 50MB. We then calculate the performance gain

between the implementations using equation (2).

Performance gain = (1− TimecostJNI

TimecostJava
)× 100% (2)

As shown in Fig. 5, the JNI implementation can improve

the performance of the feature extraction module by approx-

imately 21% on flagship phones. Even on low-end devices

such as HTC ONE A9, a 7.95% increase in performance can

be observed.

A detailed chart of the feature extraction (JNI implementa-

tion) time cost across different devices is shown in Fig. 6. We

observe that flagship phones such as Samsung S10+, Samsung

Note10+ and Samsung S9+, are able to extract the features

faster than common and lower end devices (Samsung S7,

Samsung J2 Pro, and HTC ONE A9). The time cost to extract

5MB applications on the flagship phones is between 0.144s

and 0.183s. While on common and low-end devices, it takes

approximately 0.301s to 0.641s to extract the features. Simi-

larly, for 50MB applications, the flagship phones outperform

the low-end devices (3.701s vs. 16.120s).

2) Performance optimizations in prediction on Android de-
vices: To provide a guidance for improving the performance

of sequence-based learning approaches, which may also accept

RNN as their computational layer, in the real-time prediction

on mobile devices, we conduct two experiments from different

aspects. (1) We investigate the performance optimization,

which brought by our proposed repetitive pattern removal

method, by comparing the prediction time between the original
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Fig. 6: Feature extraction (JNI implementation) time cost for different
APK sizes across different devices

Fig. 7: Prediction time cost for different sequence lengths across
different devices

and non-repetitive sequence inputs. (2) We evaluate the state-

of-the-art model optimization toolkit provided by TensorFlow

for our sequence-based approach. In the second experiment,

we first conduct a preliminary investigation to determine the

characteristic differences (i.e., model size, input requirements,

etc.) between the quantized and non-quantized models. Based

on the findings, we further investigate the influence of quan-

tization by comparing the time taken to predict sequences

of different lengths between the quantized and non-quantized

dynamic RNN models.

Repetitive pattern removal. To discover the effect of our

proposed repetitive element removal method in prediction

on real devices, we conduct an experiment to measure the

prediction time for 6 different sequence lengths across 6

different devices. In this experiment, we randomly pick 5

APKs from each sequence length category (i.e., 300, 600, 900,

1,500, 1,700, and 1,900).

As shown in Fig. 7, flagship devices such as Samsung S10+

takes approximately 2.72 times longer (0.365s vs. 0.993s) to

predict a sequence that is double the original length (e.g., 300

vs. 600). Similarly for low-end devices such as Samsung J2

Pro and HTC ONE A9, the prediction time is approximately

3.25 times longer (1.198s vs. 3.685s) to predict a sequence

that is double the original length. We observe that it takes

at least a twofold increase in prediction time cost to predict

a sequence that is twice the original length. Based on our

experiment in § IV-B2, we observe that our method reduces

the sequence length by approximately 57%, which directly

translates to an improvement in prediction time of at least

twofold. Apart from the removal method, different from the

traditional sequence-based learning approaches that work on

TABLE VII: Non-quantized and quantized model size comparison

Seq Len. Non-quantized(MB) Quantized(MB)
300 7.62 2.97

600 7.62 3.12

900 7.62 3.27

1,500 7.62 3.56

1,700 7.62 3.66

1,900 7.62 3.75

Fig. 8: Average prediction time between non-quantized dynamic Bi-
LSTM and quantized static Bi-LSTM across different devices

server end, approaches on real devices, which may have a

strong performance limitation, should take the input sequence

length of their defined networks as an important factor to

optimize their real-time performance on device.
Model quantization. To investigate the potential performance

oriented influence and their corresponding factors of quanti-

zation in our proposed system, we first conduct a preliminary

investigation to figure out the main differences between a

quantized and non-quantized model. In this experiment, we

first compare the model size of the quantized and non-

quantized models across different sequence length. As shown

in Table VII, when the sequence length is 300, the model

size is reduced by 61% (7.62MB to 2.97MB). However, as

the sequence length increases to 1,900, the model size is

reduced by approximately 50.8% (7.62MB to 3.75MB). From

the results, it is evident that the size of the quantized model is

dependent on the sequence length (i.e., longer sequence length

will constitute to a larger file size), while the size for the non-

quantized model remains constant across different sequence

length.
Next, we also conduct experiments to compare the accu-

racy between the quantized and non-quantized model against

the pre-trained model. The accuracy of quantized and non-

quantized model remains 97.85%, which is same as the pre-

trained model. Otherwise, we also notice that if the input

requirements of a network is designed to allow variable

length input (e.g., dynamic RNN), quantizing the model will

remove the flexibility for allowing variable length input (i.e.,

inputs will be static fixed length). On the contrary, the input

requirements remain unchanged if quantization is not applied.

In the event where a quantized model is deployed, padding or

truncation is required to ensure that the input sequence is of

a certain length.
Dynamic RNN. Since our dataset consists of sequences of

varying lengths, designing our network to use dynamic RNN

will be beneficial in the deployment phase. Based on the
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findings from the preliminary investigation, we observe that

quantizing our model is equivalent to using a static RNN

model, hence, we refer to the quantized model as quantized

static Bi-LSTM model and non-quantized dynamic Bi-LSTM

for the non-quantized model.

We conduct an experiment to determine if quantizing our

dynamic RNN will improve the performance of our system. In

this experiment, we apply the same test set from our previous

experiment, which contains 30 APKs with 6 different sequence

length. Next, we accept the pre-trained model with the highest

accuracy to compare the average prediction time between the

quantized static Bi-LSTM and non-quantized dynamic Bi-

LSTM models. As shown in Fig. 8, we observe that the

average prediction time for the non-quantized dynamic Bi-

LSTM model is much faster than the quantized static Bi-

LSTM model. On flagship phones such as Samsung S10+, the

average time taken to predict an extracted sequence is 2.928s

when using the non-quantized dynamic Bi-LSTM model. On

the contrary, it takes 5.326s on average to predict with the

quantized static Bi-LSTM model. The average time cost is

lowered by approximately 45% across all devices. The root

cause of this observation is expected as padding or truncation

is required for the quantized model to make the input length

consistent, i.e., 1,700, which constitutes to a higher average

prediction time. Based on the results, we decide not to quantize

our pre-trained model as it brings about more advantages for

our proposed network. The allow for variable length input in

the non-quantized dynamic Bi-LSTM model has enable us to

achieve a dynamic prediction time as no padding is required

(i.e., the time cost per prediction is dependent on the extracted

sequence length). On the contrary, a fixed length input is

required for the quantized static Bi-LSTM model, where each

sequence is padded or truncated to a certain length. By doing

so, it constitutes to a consistently higher time cost per predic-

tion. Although the model size is reduced by half (7.62MB to

3.66MB) after quantization, compromising time cost for model

size is not a feasible option for our performance-sensitive

malware detection system. Hence, for any sequence based

performance-sensitive learning approaches, which uses RNN

as the basic computational layer, dynamic RNN is currently an

important option to optimize their system performance instead

of quantization, which is widely adopted.

Currently, TensorFlow does not support quantization for

models that accept variable length input (e.g., dynamic RNN)

[30]. During quantization, a “reshape” operation is added

internally to ensure that the input requirement is of fixed

length. Thus, padding or truncation of the sequence is required,

which results in the dynamic RNN model being indirectly

converted into a static RNN model.

D. Comparison between previous work and SeqMobile

We briefly compare SeqMobile against two other previous

works (i.e., MobiDroid [7] and MobiTive [8]). We use our

results for Samsung S10+ as a baseline to benchmark against

Nexus 6P from MobiDroid and Huawei P30 from MobiTive.

As shown in Table VIII, even though the features used in the

TABLE VIII: Comparison of SeqMobile against previous work

Systems Features used Accuracy(%) Time cost(s)

MobiDroid
Opcode sequence

API calls
3 Manifest properties

97.35% 17.76

MobiTive
API calls

3 Manifest properties
96.75% 0.46

SeqMobile
API and intent sequence

2 Manifest properties
97.85% 4.16

other two systems are similar (e.g., API calls and manifest

properties), our sequence-based approach, which contains ad-

ditional semantics, is able to achieve a much higher accuracy

(i.e., 97.85%). Although there is an improvement in time cost

when comparing to MobiDroid (4.16s vs. 17.76s), our time

cost is still approximately 10 times higher (4.16s vs. 0.46s)

when compare to MobiTive. Despite our high time cost, with

the additional semantics from the sequence-based features, our

accuracy is higher than MobiTive (96.75% vs. 97.85%). Also,

the study from MobiTive [8] shows a trend of mobile hardware

performance improving over the years, we strongly believe that

our approach can achieve a significantly lower time cost in the

upcoming years, making the accuracy of the detection system

a much more important factor.

V. RELATED WORK

In this section, an overview of the current deep learning

malware detection approaches will be presented. Generally,

these approaches can be categorized into server end and device

end approaches.

A. Server-end Approach

Malware detection on server end are usually efficient due to

the computational resources available. To summarize, there are

approaches [31]–[36] that extract features (e.g., permissions

and API calls) from XML and DEX files and represent them

as feature vectors to uncover potential malicious behaviors.

There are also approaches [9]–[11], [37] that represent features

(e.g., API calls, opcode, system calls) as sequences to detect

malware. Also, some approaches [38]–[41] use the additional

computation resources to their advantage and analyze com-

plex features such as control flow graphs. While server end

approaches achieve great success in detecting malware, it also

incurs network transmission overhead for sending the required

files to the server.

B. Device-end Approach

Device-end solutions are often performance-sensitive sys-

tems that can effectively detect malware under a certain

time constraint. Given the performance limitations of Android

devices, such device-end solutions usually have limited re-

sources to extract and analyze complex features to classify the

applications. Thus, only limited features can be used to detect

malware. Feng et al. proposed MobiDroid [7], a performance-

sensitive malware detection system, which represents features

(e.g., opcode sequence, API calls, and manifest properties)

as feature vectors and leverages deep learning algorithms to

help detect malware. Another study by Feng et al. [8], uses a

different method to directly extract features (e.g., API calls and
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manifest properties) from binary files to perform classification

with a low overhead time. This paper studies the device-end

performance of sequence-based malware detection and pro-

pose performance optimization methods for sequence-based

learning approaches. Closest to our device-end sequence-

based approach, Elmouatez et al. proposed Maldozer [42],

which uses API sequences to detect Android malware families.

Differently, they did not consider the performance on devices

as a first order factor in the approach. Existing device-end

approaches mainly focus on extracting limited feature sets

to meet the time constraints. With the rapid advancement in

technology, the performance of Android devices is improving

every year [8]. Thus, studies on device-end malware detection

systems is much needed.

VI. CONCLUSION

In this paper, we have investigated the effectiveness of using

sequence-based learning approach together with performance

optimization methods to detect malicious applications on

device end. The evaluation results show that our approach

achieves a high accuracy (97.85%) and a reasonable detection

time on flagship phones. Moreover, we have also provided a

guidance on the state-of-the-art TensorFlow model optimiza-

tion toolkit for device-end sequence-based approaches.
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